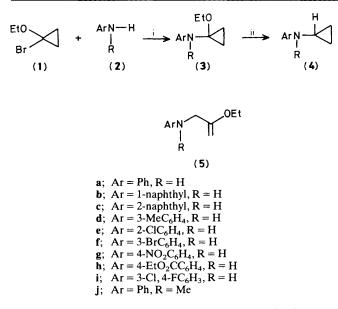
N-Cyclopropylation of Aromatic Amines

Jahyo Kang* and Koan Sung Kim

Department of Chemistry, Sogang University, Mapoku, Seoul 121, Korea

Various aromatic amines have been *N*-cyclopropylated in excellent overall yields in a two-step sequence of 1-ethoxycyclopropylation followed by reduction.


Cyclopropylamines are a well known class of compounds, some of which are physiologically active, for example as irreversible inhibitors of monoamine oxidase and cytochrome P-450.¹ However, the simple incorporation of a cyclopropyl group into a heteroatomic terminus, *e.g.* an amino group, of a molecule is difficult to achieve because cyclopropyl halides are extremely resistant to nucleophilic attack.² We now report a simple indirect method, which utilizes a temporary activating group on the cyclopropane ring.

An excess (1.2-2 equiv.) of readily available 1-bromo-1ethoxycyclopropane (1)³ was stirred with various aromatic amines (2) in the presence of triethylamine as an acid scavenger in a *non-polar* refluxing solvent such as dichloromethane or pentane (2-3 M).⁴ N-(1-Ethoxycyclopropyl)arylamines (3) were exclusively obtained (Table 1; 67-94%); no trace of the ring-opened enol ethers (5) was found.² Compounds (3) could be reduced with a variety of reducing agents in the presence of a Lewis acid. A mixture of NaBH₄

Table 1. Preparation	ı of ary	'l N-cyclo	propylamines.*
----------------------	----------	------------	----------------

	1-Ethoxycyclopropylation ^b		Reductive de-ethoxylation ^e	
Amine (2)	Reaction time/hc	Yield of (3)/%	Time/h (temp./°C)	Yield of (4)/%
a	29	83	1(0)	96
b	36	85	1 (reflux)	74
с	24	80	12 (reflux)	45
d	12	80	1(0)	87
e	24	90	1 (reflux)	84
f	26	94	1 (23)	100
g	48	64ª	1 (reflux)	82
h	24	86	4 (23)	81
i	25	84	2 (23)	100
j	17	67	1(0)	100

^a All compounds gave spectral data in agreement with the proposed structures. ^b ArNHR, (1) (2 equiv.), and Et₃N (2 equiv.) in refluxing solvent (substrate concentration 3 M). ^c All in CH₂Cl₂ except (2i) in pentane. ^d Accompanied by recovery of starting material (2g), 21%. ^c The ethoxy compounds (3) were stirred with a precombined mixture of NaBH₄ (2 equiv.) and BF₃·OEt₂ (2 equiv.) in THF (substrate concentration 0.5 M).

Scheme 1. Reagents and conditions: i, (1) (1.2–2 equiv.), dichloromethane or pentane (2–3 \times solution), reflux; ii, NaBH₄ (2 equiv.), BF₄·OEt₂ (2 equiv.), THF (stirred at 0 °C for 0.5 h before use).

(2 equiv.) and $BF_3 \cdot OEt_2$ (2 equiv.) in tetrahydrofuran (THF), which had been stirred at 0 °C for 0.5 h, was very effective for the reductive de-ethoxylation, giving satisfactory yields of the corresponding *N*-cyclopropylamines (4) (Table 1). The secondary amine (2j) could also be cyclopropylated in good overall yields, but aliphatic amines such as dodecyl- and cyclohexyl-amines did not react.

The simple *N*-cyclopropylation of aromatic amines reported herein should provide ready access to new cyclopropylamines by structural modification of existing compounds.

Received, 23rd February 1987; Com. 236

References

- 1 R. H. Tullman and R. P. Hazlik, Drug Metab. Rev., 1984, 15, 1163.
- 2 H. C. Brown, R. S. Fletcher, and R. B. Johannesen, J. Am. Chem. Soc., 1951, 73, 212; V. S. Aksenov, G. A. Tereléva, and Y. V. Savinykh, Russ. Chem. Rev., 1980, 49, 549.
- 3 R. C. Gadwood, *Tetrahedron Lett.*, 1984, **25**, 5851; R. C. Gadwood, M. R. Rubino, S. C. Nagarajan, and S. T. Michl, *J. Org. Chem.*, 1985, **50**, 3255.
- 4 For solvolysis of 1-chloro-1-alkylheterocyclopropane, see R. Jorritsma, H. Steinberg, and Th. J. de Boer, *Recl. Trav. Chim. Pays-Bas*, 1981, **100**, 184, 194.